A Neural Representation of Sketch Drawings
A Neural Representation of Sketch Drawings 以向量形式,生成连贯的涂鸦(低分辨率的)。 想法 以人的思维方式进行生成,具体是模拟控笔的动作:移动方向,提笔,结束绘画 什么是:unconditional and conditional generation of vector images composed of a sequence of lines. 数据 dataset 为笔画动作,每个点由5个元素表示,分别是偏移和状态,其中偏移是相对于上一个点的偏移,状态则包含:笔尖触纸、抬笔、结束绘画 方法 经过双向RNN 生成h,经过全连接层投影到$ \mu $和 $\sigma$,使用ex使得$\sigma$非负,再进行$z = \mu + \sigma \odot \mathcal{N}(0, I)$,其中$ \sigma \odot \mathcal{N}(0, I)$,是生成一个符合高斯分布的噪声,并使用$\sigma$进行放缩 为何这样做: Encoder 神经网络输出 $\mu$ 和 $\sigma$ 2,实际上是在告诉系统:“我认为这张草图在潜在空间里的位置大概在这里($\mu$),但我不太确定,允许的误差范围大概是这么大($\sigma$)。 z经过tanh ($[ h0 ; c0 ] = \tanh(W_z z + b_z)$)得到初始状态向量h0,c0,其中前者是初始隐藏状态,代表短期记忆或输出状态,后者是初始细胞状态(LSTM 特有的),代表长期记忆初始细胞状态(LSTM 特有的),代表长期记忆 hi的计算方法: 根据 $h_0$(零状态)和 $S_0$ 计算出 $h_1$。 ...