1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
| def VGG16(input_shape=(224,224,3)):
model = keras.Sequential([
keras.Input(shape=input_shape),
layers.Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu'),
layers.Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu'),
layers.MaxPool2D(pool_size=(2,2), strides=(2,2), padding='valid'), #这里不same,则尺寸减半
layers.Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu'),
layers.Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu'),
layers.MaxPool2D(pool_size=(2,2), strides=(2,2), padding='valid'),
layers.Conv2D(filters=256, kernel_size=(3,3),padding='same', activation='relu'),
layers.Conv2D(filters=256, kernel_size=(3,3),padding='same', activation='relu'),
layers.Conv2D(filters=256, kernel_size=(3,3),padding='same', activation='relu'),
layers.MaxPool2D(pool_size=(2,2), strides=(2,2), padding='valid'),
layers.Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'),
layers.Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'),
layers.Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'),
layers.MaxPool2D(pool_size=(2,2), strides=(2,2), padding='valid'),
layers.Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'),
layers.Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'),
layers.Conv2D(filters=512, kernel_size=(3,3), padding='same', activation='relu'),
layers.MaxPool2D(pool_size=(2,2), strides=(2,2), padding='valid'),
layers.Flatten(),#展平
layers.Dense(units=4096, activation='relu'),
layers.Dense(units=4096, activation='relu'),
layers.Dense(units=4096, activation='softmax')
])
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
return model
|